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Counterflow  near 72

‘J’a]so  C, P. Chui  ], David I.. Gooclstcin2,  Alcxa W. IIarter2 and Rarljan Mukhopaclhyay2

Jet Propulsion I.abora(ory] ancl Condensed Matter Physics2,

California lnstitutc  of Technology, Pasadena, California91109

(1’eb. 20, 1996)

We present a thermodynamic treatment of superfluid helium in the presence of an applied heat

current, Q, which procluces  a countcrflow  velocity W. Using a thermodynamic expression

relating the heat capacity to the depression of p, with w, wc find  that nf=r ~’a, the ~~at capacity

is cxpcctcd to diverge a[ a dcpmscd  transition tcmpcraturc. ‘1’hc exponent is found to bc 0.5 in

-.
mean-field theory and in conventional rcnormali~,ation  group theory, In contrast, if W rather than

Q is hclcl constant, the heat capacity remains finite.
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Owing to the remarkable success of the renormalization group theory (R(i), phase transitions

at equilibrium arc to a large cxlint  well understood. ~’here is still much to be ]carncd,  however,

concerning non-cquilibrjum and dynamic phenomena. Near the lambda point of 411c,  an appliccl

heat flux Q can have an intcrcsling  influence on the nature of the transition. A number of

cxpcrimcnts [ 1 ] report that the transition tcmpcraturc is depressed. The depressed transition

t e m p e r a t u r e  T,.(Q) scales  with Q a s  [7a  - T;.(Q)] - L?X. ‘J’hcories [21 prcdicf th:tt

~ = ] / (2v)=().746, Where  v= O.6705 [3] is tl~c correlation length exponent. Recently,

1 Iaussmann  and Dohm (I ID) [4] have applicci  RG to this problcm  and predicted cLIsp shape curves

[5] for the supcrflujd  density and the heat capacity at various values of constant Q near 2;.(Q).

Ilowcvcr,  it was pointed oL]t [6] that the hc:it  capacjiy anomalies prcdictcd by 1111 are not

consistent with the result of a simple thermodynamic calculation at constant Q. J111 responded

[6] that their heat capacities were, jn fact, calculatcci at constant superfluid velocity. ‘l’his draws

our attention to the fact that the basic  thermodynamics of this system is not wiclcly understood.

It is the intent of this paper to fill in this xap. Surprisingly, when we. recalculate the heat

capacity properly, it diverges at Tc (Q) even in mean-field theory.

1.irluid  helium  in the presence of a countcrf]ow  can be treated as a system that exhibits an

extra dcgrcc  of tllcrl~~o[lyll:i[~lic  frccclom. ‘J’his is a unique case in which a dynamic situation may

bc treated by equilibrium thermodynamic analysis, in supcrf]uici  helium, the first law of

thermodynamics at constant density may be. written as [7]:

dli” == 7 m 4 w ● d;<,, (1)
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where E’ is the internal energy in a reference frame traveling with the superfluid, ~’ = ;,l – ~~ is

the velocity of the normal fluid in that frame, and ~0 = pnW is the normal fluid momentum

density. The term ~ ● d~o is the work per unjt volume required to set the normal fluid into

motion. Thus the new conjugate variables in superfluid arc (W, ~. ). Most phase transition

theories, to which we wish to compare our results, assume that the normal fluid is at rest. The

internal energy in the normal fluid frame En can be obtained using the Galilean  transformation

[7] En = Es +pii2 12–70  ● W, giving

dEn=TdS+~*dW (2)

~thcre, ~J = p.,W. Thus in the normal fluid frame the new conjugate pair is (;, ~). The free

energy is F(T, W) = En – TS giving:

dF=–SdT+?Odii
ti

F(T,li) =F(T, O)+~p Jii@Od  Ii (3)
o

We henceforth drop the vector notation because all motions are in the same direction in the case

wc treat. The term F(T, O) contains all the characteristics of the phase transition at zero W,

which has been well studied both experimentally and theoretically. At a finite W the only

unknown is the function p,, ( W). Qualitatively, if p., is only weakly depressed, the integral in

cq. (3) can be approximated by p~ (0)W2  /2, The dashed line in Figure 1 shows F’(T, W) for this

case. C)n the other hand, f p, is significantly depressed (Fig. 1a), the ntegrand in cq. (3),
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p, (W)W, increases with W at small W, but might decrease at large W (Fig. lb). As shown

by the solid line in Fig. 1 c, a critical counte.rflow  velocity U’C exists when F(T, W) changes

from convex to concave [8]. This point is also the point where p, ( W)W

shall see below, if p.r (W) is sufficiently depressed to reach this point, a

transition occurs.

is maximum. As we

thermodynamic phase

The depression of p, cannot be derived by thermodynamic arguments. It must be measured

experiment.ally, calculated from microscopic. theory, or obtained from phase transition theory near

7’~ . Experimentally, not much is known about p,, (W). The only experimental evidence to date

is the, observation by Hess [9] far from i“a , which agrees with the roton theory. Near TA , only

theoretical predictions exist. The three existing theories are. the mean-field theory [ 10], the y/

theory [11 ), and the RG theory of IID [4]. Since. we will use the p$ ( W) expression from these

theories to compute the heat capacity, it is desirable to show that the theories are consistent with

thcrmod ynamics. These theories all start from a mean-field expansion:

F~j = al t//12 -t PI y/14 + (h2/2nI)\V yJ12

It is not clear that F’ni obeys eq. (3). Here a, P and

(4)-t Mlyf.

M are expansion coefficients, M is zero

except in the ~ theory, the macroscopic wave function is given by ty = ~el@, where pc$ = ml V12

and v,, = (h/m)V@,  and m is the mass of a helium atom. In terms of p, and V$:

(s)

4
e.
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where the term p~v~ /2 is added to account for the motion of the normal fluid. A controversy

exists in the literature concerning the proper procedure for minimizing 1;4  with respect to yl (or

p,). Pitaevskii  [12] minimizes Fnq while holding the momentum j = F’+ pv~ constant. Here,

F’nti  is a free energy in the laboratory frame. Khalatnikov  [13] uses a Galilean  transformation to

obtain a free energy in the normal fluid frame:

(6)

IIe then minimizes F~f holding W ~onstant. “~o show that this is the correct approach, we note

that F~f varies with W through p,(w) and the t~rm  P,W2 /2” Thus

(7)

From eq. (6), (dF’&/dW)P,  z p,(W) W. The optimization condition is (dF:#Ps)w,= O. Thus

eq. (7) and eq. (3) become the same, proving consistency with thermodynamics.

In uniform flow, Vp., == O. ‘I’he expression for p,(W) is obtained by optimizing ~jv.

All three theories give p,(W) of the form:

p,(w) = ps(o)f(~)> (8)
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where K = W/W, and Wt is a characteristic velocity give by W, = h / mg. 13 C1C)W 7’L ,

< = ~,,(21)-”,  where ~,,= 1.43x10-8 Cm [14]. ‘1’hc characteristic velocity W, can bc expressed ~S

Wl = W,)t’, where W,, = h2 v / m(() = 175.4 mkt. For the mean-field theory, ~(K) = 1-2 K*.

given by eqs 5.12, Cl 1 and C3 in ref. 3. All three theories prcdjct that p, is sufficiently

dcprcsscd  for a phase transition to occur.

Next wc compute the heat capacity using p,(W) from hcsc theories. Wc first treat the

case where W js held constant. Ilxpcrimcntally,  this might bc the case of a persistent superfluid

current flowing around a loop, similar to the superfluid gyroscope cxpcrimcnt clcmonstratccl by

Clew and Rcppy [15]. From cq. (3) above:

K

AF’(T, W) == F(7’, W) – 1~(7,0) = pr(0)  W: j x-(x)4x
o

(9)

C12AF(7’,  W)
‘1’hc heat capacity is changed by AC~i,  = –TV -–- —d~–— , where V = 27.38 cn~3/mole [ 16] is

tv

the molar volume.

scaling relation ~ =

Using p,(0) == P,) Z<, where po= 0.370 gnI/Cn13 [ 17], together with the

v= (2–et)/3, wc obtain:

[

K 1ACWta == –~,,V ~(~V- ])jxf(x)dx -- (4 V-- ]) K2j_(K)+ VK’ --7;-- .
q d(K)

o

(10)

where C() = Vpc, W: /T1 = 143 (J / mole K). l:or the mean-field theory, this Icduccs  to:
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ACIVta  = C,, VK2[(1 – V)+(I + V)~2]/2. (11)

I;or the yJ theory  and for }lD, equation ( 10) is evaluated using numerical differentiation and

integration. These results arc shown in I;ig. 2a. Ct~, approaches a finite constant at

KC = WC / W, in all three theories.

It is experimentally feasible to measure the heat capacity in a thermal conductivity ccl] while

passing a constant heat flux Q through it, where

Q = p,r(w)wsT , (12)

and S = 1.58 J/gnl K [18] is the entropy. Therefore, keeping Q constant is the same as keeping

}’= p,(W)W constant. At constant }’, it is ncccssary  to define @(T, P) = }“(7’, W) – W]’,
w’

J
giving d~~ = -SdT -- WdP and A@(T, P) = @(T, P) - @(T, O) = - Wd(p,, W). “1’hus the heat

o

capacity can be computccl  as:

(13)

Although ACW,  is finite, AC~ diverges at a critical heat current, Q,,. The reason may be

seen directly from thermodynamics. Starting from the entropy S(T, W), wc obtainccl  the

relations:

7



. .
“?

ds = (f3s/fm’)1}, cm + @s/aw)7  dw

C’Q == T(Js/a7’)Q  = c}},  +- 7’(os/(]w)7((7w/JT)(,

(14)

(15)

From cq. (3), dl’ =- -Sd7” + PdW,  we obtained a Maxwell relation (~P/~7’)}V = - (dS/~lV)Y.

‘1’bus,

cc) = Cw - 7’(dl’/d7’)}v(dw/7/’),)  . (16)

llcrc wc have made use of cq. (12) to obtain the relation (dW/dT)~  = (dW/d7’),,. Llsing the

chain rule:

(W/J7’)Ja7’/Jw),,  (dw/W),  = --1, (17)

CQ == Cw +- 7’(a/aT):v  /(a}’/W)7.  . (18)

‘1’hc phase transition occurs when (d’J’/dW’),, == (6’1)/dW)l,=0.  T h u s  CL, divcrgm at this

point. ‘]’his result  nlLIst  bc true for any theory that dcprcsscs  p, enough to reach (~P/2w)T =’ 0,

including all three theories discussed here. Iiquation  (18) gives,

[

Kdf ( K)

U

2  dK~(K)
AC~ == AC\v +- C,)t - u V2K2 -

dK
-f(K) - ~K (19)
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‘l’he results can be expressed in terms of the variable q == Q/Q, using  the relation

q = @( K)/[ K{.f( K,, )] obtained from eq. (12). ‘1’llc values for K’., f(K<. ), and Q,. f t2  v arc Iistecl

in “1’able 1. For the mean-field theory:

[

* (V+ I)+5(3V-  I) K2+-2(V-3)K4
taACQ =  C{, VK - .  .  .  . . —  — .

2.(1 -6K2)
1

(20)

= (~,)/2)v(v+ 1) K: f2(K,)q2[l -1 0.965q2+...],

:it snMll q. Figure 2b shows that all three theories give a divergent Cc). Again  the reslllts  for

ihe ~ theory and the }ID theory arc obtained numerically. Because Q,. is different for the three

theories, wc have used Q 1 Q~ft)  as the x-axis, so tl~:lt :~11 three theories c:m bc plotted  on t~le sanlc

scale. 1 lere Q~I1) is the critical heat current given by 1111. Near Q,,, ccl. (18) gives

co - l/(d]’/2w)7 . We can expand }’ about I’C, the Superfluid momentum at the phase

transition:

()p ~ p + .? (1(w-w+; $;- (w-w,)’+.~
(3W ,;,,

w’

(21)

Since (d})/dW)}V =0, and (f32P/dW2)}i, <0, (PC - }’) - (WC - W)’, and (c3P/dW),  -
c r

(WC - W). Thus:

cc) - I/(w, -w) - 1/{1’, --1’- (Q( -- Q)” “ (22)
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where the cxpcment u =0.5. Wc have vcrificci numerically that all three theories arc consistent

with this prediction. It is easy to show that if wc cicfinc 0 = [7j. (Q) – T]/Y~, (Q), then

CQ -0-”. (23)

III conclusion, our ana]ysjs has lead to a number of surprising results. There exists  near ?a,

jn the Y“ – Q plane, a curve 7[, (Q) that is apparently a new line of critical points, at which the

heat capacity, C~, diverges according to eq. (23), lJnlikc other familiar phase transitions, the

heat capacity divergence in this case is prcclictcd by mean-field theory, and indcccl,  the exponent

/4= 1/2 can bc arrjved at by the mean-field type argument that leads to cq. (22). It may seem

surprising that the mean-field value for u also rcsu]ts from the RG theory of 1111[ 19], but perhaps

that means their theory only deals with critical point behavior at the lambda-point, f = O, not on

the line ~;, (Q), where O = O. Became of flllctllalions,  onc dots not expect the mean-field  theory

exponent to bc correct.

llxpcrimcnta] mcasurcmcnls  of C~ near 7j. (Q) arc urgently nccdcd. As our arguments have

shown, they would constitute the first information concerning how p,$ depends on W near Ta .

l;xisting  cxpcrimcnts  [ 1 ] show that dissipatio~l duc to vortex formation [20] tends to set jn at

Q I Q:]]’ - 0.s, cxccpt  perhaps very close to Ta, where Q. js very small. lJOWcvcr,  JJjg.  zb

shows that a large effect ( ACQ -3 J/mole K) may bc cxpcctccl even at Q i Q:”) -0.5.

1 iinall y, wc speculate that this ncw phase transition jnvolvcs  fluctuations of a different order

parameter, perhaps W or W – WC, with conjugate field P or P - PC, implying a different

universality class from the conventional lambda transition. IJargc fluctuations in W at constant
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f? (or 1’) are to be expcctcd  near the point (~P/&V)y, = O. on the other hand, in spite of the

agreement bctwccn  the theories discussed here, it is also possible that p,r  ( W) is never sufficiently

depressed to reach the point (6’P/dW)7 = O, anti supcrflow  thus breaks  up in some other way.
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Prasad and Prof. Peter Wcichrnan. T. C. P. Chili and A. W. }Iarter would like to thank NASA

Microgravity  Science and Application Division for its support.
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I~lGLJRI i CAPTIONS AND TAB] .E

IJigure 1: A plot of a) p,(W) I p, (0); b) Wp,, ( IV) 1p,(0); and c) The free energy for the cases

where: dashed line - p$ is not depressed; ancl solid line - p,f is depressed sufficiently for the onset

of a phase transition at WC. This illustration is tl)c result of the mean-field iheory.

Figure 2: Change in the heat capacity times ta at a) constant W, and b) constant Q. ~’hin

line - I ID theory, thick line - mean-field theory, triangles - ~ theory with M = 1, ciashcd  line -

p,, not clcpresscd by W as discussed in ref. 16].

Tab]c I: A summary of Kc, f( Kc ) for the three theories (M=l for the ~ theory).

?
Mean-l ;ield y Theory III) Theory

K,. 1/46 0,433 0.397

j_( Kc ) 2/3 0.707 0.790

Q, I t 2 v (WAHIP) 6082 6842 7007
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